Mutations of surface residues in Anabaena vegetative and heterocyst ferredoxin that affect thermodynamic stability as determined by guanidine hydrochloride denaturation.

نویسندگان

  • J K Hurley
  • M S Caffrey
  • J L Markley
  • H Cheng
  • B Xia
  • Y K Chae
  • H M Holden
  • G Tollin
چکیده

The stability properties of oxidized wild-type (wt) and site-directed mutants in surface residues of vegetative (Vfd) and heterocyst (Hfd) ferredoxins from Anabaena 7120 have been characterized by guanidine hydrochloride (Gdn-HCl) denaturation. For Vfd it was found that mutants E95K, E94Q, F65Y, F65W, and T48A are quite similar to wt in stability. E94K is somewhat less stable, whereas E94D, F65A, F65I, R42A, and R42H are substantially less stable than wt. R42H is a substitution found in all Hfds, and NMR comparison of the Anabaena 7120 Vfd and Hfd showed the latter to be much less stable on the basis of hydrogen exchange rates (Chae YK, Abildgaard F, Mooberry ES, Markley JL, 1994, Biochemistry 33:3287-3295); we also find this to be true with respect to Gdn-HCl denaturation. Strikingly, the Hfd mutant H42R is more stable than the wt Hfd by precisely the amount of stability lost in Vfd upon mutating R42 to H (2.0 kcal/mol). On the basis of comparison of the X-ray crystal structures of wt Anabaena Vfd and Hfd, the decreased stabilities of F65A and F65I can be ascribed to increased solvent exposure of interior hydrophobic groups. In the case of Vfd mutants E94K and E94D, the decreased stabilities may result from disruption of a hydrogen bond between the E94 and S47 side chains. The instability of the R42 mutants is also most probably due to decreased hydrogen bonding capabilities.(ABSTRACT TRUNCATED AT 250 WORDS)

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Mutations of surface residues in Anabaena vegetative and heterocyst ferredoxin that ffect thermodynamic E 8 I stability as determined by guanidine hydrochloride denaturation

The stability properties of oxidized wild-type (wt) and site-directed mutants in surface residues of vegetative (Vfd) and heterocyst (Hfd) ferredoxins from Anabaena 7120 have been characterized by guanidine hydrochloride (GdnHCI) denaturation. For Vfd it was found that mutants E95K, E94Q, F65Y, F65W, and T48A are quite similar to wt in stability. E94K is somewhat less stable, whereas E94D, F65A...

متن کامل

Structure-function relationships in Anabaena ferredoxin: correlations between X-ray crystal structures, reduction potentials, and rate constants of electron transfer to ferredoxin:NADP+ reductase for site-specific ferredoxin mutants.

A combination of structural, thermodynamic, and transient kinetic data on wild-type and mutant Anabaena vegetative cell ferredoxins has been used to investigate the nature of the protein-protein interactions leading to electron transfer from reduced ferredoxin to oxidized ferredoxin:NADP+ reductase (FNR). We have determined the reduction potentials of wild-type vegetative ferredoxin, heterocyst...

متن کامل

Molecular structure of the oxidized, recombinant, heterocyst [2Fe-2S] ferredoxin from Anabaena 7120 determined to 1.7-A resolution.

The [2Fe-2S] ferredoxin produced in the heterocyst cells of Anabaena 7120 plays a key role in nitrogen fixation, where it serves as an electron acceptor from various sources and an electron donor to nitrogenase. The three-dimensional structure of this ferredoxin has now been determined and refined to a crystallographic R value of 16.7%, with all measured X-ray data from 30.0 to 1.7 A. The molec...

متن کامل

Structure-function studies of [2Fe-2S] ferredoxins.

The ability to overexpress [2Fe-2S] ferredoxins in Escherichia coli has opened up exciting research opportunities. High-resolution x-ray structures have been determined for the wild-type ferredoxins produced by the vegatative and heterocyst forms of Anabaena strain 7120 (in their oxidized states), and these have been compared to structural information derived from multidimensional, multinuclear...

متن کامل

Contributions of the large hydrophobic amino acids to the stability of staphylococcal nuclease.

To quantitate the contributions of the large hydrophobic residues in staphylococcal nuclease to the stability of its native state, single alanine and glycine substitutions were constructed by site-directed mutagenesis for each of the 11 leucine, 9 valine, 7 tyrosine, 5 isoleucine, 4 methionine, and 3 phenylalanine residues. In addition, each isoleucine was also mutated to valine. The resulting ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Protein science : a publication of the Protein Society

دوره 4 1  شماره 

صفحات  -

تاریخ انتشار 1995